
Lecture 17

Discretization Effects on Acceleration

1 Consistent Diffusion Differencing

In a previous lecture, it was shown that the diffusion-synthetic acceleration is an extremely

effective means of accelerating source iterations with isotropic scattering. However, to

ensure the effectiveness of the DSA method, one must discretize the transport equation in

a manner that is consistent with the spatial discretization of the transport operator. This

was not appreciated in early applications of the DSA method, and it lead to unsatisfactory

acceleration schemes. For instance, the Sn equations with diamond differencing were often

accelerated using a cell-centered differencing for the diffusion operator. This approach was

found to work very in problems with scattering ratios near unity as long as the cells were

optically thin. When the thickness of the cells exceeded roughly a mean-free-path, the

scheme became unstable. The source of this difficulty remained a mystery until it was

finally discovered during the mid 70’s that consistent differencing eliminated the problem.

Given spatially differenced Sn equations, the corresponding consistent diffusion equation is

obtained from the Sn equations simply by using an angular Galerkin approximation based

upon a linear trial space. To demonstrate the technique, let us begin with the diamond-
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differenced Sn equations with isotropic scattering and an isotropic distributed source:
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Next we assume that the angular flux is linear in µ:
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Next we substitute from Eq. (2) into Eq. (1), and sequentially take the zero’th and first

angular moments of that equation (using the quadrature formula) to respectively obtain:
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We note that the properties of standard Sn quadrature sets ensures that all integrals arising

in the derivation of Eqs. (3) and (4) are performed exactly. Our next task is to eliminate

the currents from Eq. (3) to obtain a diffusion equation. To this end, we first solve Eq. (4)

for the current:
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Next, we average Eq. (3) over cells i and i+ 1 to get:
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Since for all directions,
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it follows that
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Using Eq. (8), we re-express Eq. (6) as follows:
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Substituting from Eq. (5) into Eq. (9), we obtain the desired diffusion equation:
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This is a three-point vertex-centered diffusion discretization that is very similar to the

linear-continuous finite element scheme. To derive boundary equations, we first consider

the balance equation for the left cell:
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Next we use Eq. (8) to eliminate J 3
2
from Eq. (11):
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To proceed, we first assume (without loss of generality) a source boundary condition for

the transport solution at the left boundary, and then recognize that the assumed linear

dependence of the angular flux only applies to the outgoing angular flux at the boundaries.

Calculating J 1
2
, we obtain:
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where fL(µm) is the incident flux at the left boundary. Evaluating the integrals in Eq. (13)

assuming a standard Sn quadrature set, we get

J 1
2
= jin − 〈µ〉

2
φ 1

2
+

1

2
J 1

2
, (14)

where jin is the incoming half-range current
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and
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We stress that we always define half-range currents to be positive quantities. Solving

Eq. (14) for J 1
2
, we get
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This is just a Marshak source condition with the integrals evaluated via quadrature. If any

other type of transport boundary condition is assumed, one similarly obtains a quadrature-

generated Marshak condition of the same type. Substituting from Eq. (5) and Eq. (17)

into Eq. (12), and dividing that equation by two, we get the left boundary equation for the

diffusion equation:
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The derivation of the right boundary equation is completely analogous. The resulting

equation for the right boundary is
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where I is the total number of cells.

2 Discrete DSA

The discrete DSA equations with spatial diamond-differencing for the Sn equations and

consistent diffusion differencing can be expressed as follows:
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We can apply a form of Fourier analysis to our discrete iteration equations. The prin-

ciple is nearly identical to that of the continuous analysis. We first assume an infinite,

homogeneous, uniform mesh. Next, we re-express Eqs. (20a through (20d) in terms of the

errors at each step:
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We next make the fundamental assumption that the spatial dependence of the discrete

angular flux error is defined by a single Fourier mode:
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Our next task is to obtain the scalar flux error at step �+ 1
2
in terms of the scalar flux error

at step � by integrating Eq. (26) over all angles using the Sn quadrature. However, rather

than choose a specific quadrature order, we choose to perform the integration analytically.

Multiplying both the numerator and denominator in Eq. (26) by the complex conjugate of

the denominator, and integrating the resulting expression over all angles, we get:
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Note that H represents the source iteration eigenfunction. Next, we make the discrete

Fourier anzatz for the diffusion correction:
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Substituting from Eqs. (27a) and (28) into Eq. (23), dividing that equation by exp(jλxi+ 1
2
),

and solving for ∆Φ�+ 1
2 , we obtain the scalar flux error estimate in terms of the scalar flux

error at step �:
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Finally, we substitute from Eqs. (27a) and (29) into Eq. (24) to obtain the desired eigenvalue

that relates the scalar flux error at step �+ 1 to the scalar flux error at step �:

δφ�+1 =

{
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}
δφ� . (30)

This eigenfunction has a periodic dependence upon λ. It limits to the eigenfunction

for analytic DSA in the limit as σt∆x → 0. For instance we compare the discrete source

iteration and DSA eigenfunctions for c = 1 and σtδx = 0.01 with the corresponding analytic

source iteration and DSA eigenfunctions as a function of the parameter, κ = λ/sigmat, in

Fig. 1. It can be seen from Fig. 1 that the discrete and analytic eigenfunctions are essentially

identical for the range of κ values considered. At larger values of kappa, the eigenvalues

differ from their analytic counterparts. However, given any finite range of kappa values, one

can always make σt∆x small enough to obtain agreement. To demonstrate the periodic

nature of discrete eigenfunctions, we plot them Fig. 2 as a function of the parameter,

θ = λ∆x/2. Two full periods of the eigenfunction are shown in Fig. 2. To demonstrate

the importance of consistency in the diffusion differencing, we have computed the discrete
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Figure 1: Comparison of discrete and analytic SI and DSA eigenvalues for c = 1 and
σt∆x = 0.01.

DSA eigenfunction after replacing the fully consistent diffusion equation Eq. (23) with the

following lumped diffusion equation:
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The consistent and lumped DSA eigenfunctions are compared in Fig. 3 for c = 1 and

σt∆x = 0.01. It can be seen from Fig. 3 that the eigenfunctions are essentially identical.

However, we compare these two eigenfunctions for c = 1 and σt = 1.25 in Fig. 4. At this

cell thickness, the consistent DSA scheme remains effective, but the lumped DSA scheme
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Figure 2: Discrete SI and DSA eigenvalues for c = 1 and σt∆x = 0.01.

is unstable with a spectral radius of about -1.2 at θ = π . As expected the instability is

associated with a high-frequency mode. It is in fact the highest-frequency mode that the

mesh can support.

The consistent DSA scheme remains effective with a spectral radius of about .23 for all

cell thicknesses. Some other discretizations, such as the linear-discontinuous scheme, have

consistent DSA schemes that give a spectral radius of zero in the limit as σt∆x→ ∞. The

lumped DSA scheme is stable at σt∆x = 1.0 but is significantly degraded with a spectral

radius of roughly 0.75.
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Figure 3: Comparison of Consistent and Lumped Discrete SI and DSA eigenvalues for c = 1
and σt∆x = 0.01.
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Figure 4: Comparison of Consistent and Lumped SI and DSA eigenvalues for c = 1 and
σt∆x = 1.25.
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